
Chaitali Shinde Page 1

Class: SYBBA-CA Subject: Object Oriented Programming using “C”

Created By: Chaitali Shinde

 Unit 1-Introduction to C++

OOPs (Object Oriented Programming)

Object means a real word entity such as pen, chair, table etc. Object-Oriented

Programming is a methodology or paradigm to design a program using classes and objects.

It simplifies the software development and maintenance by providing some concepts:

o Object

o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table,

keyboard, bike etc. It can be physical and logical. An Object is an identifiable entity with

some characteristics and behaviour. An Object is an instance of a Class. When a class is

defined, no memory is allocated but when it is instantiated (i.e. an object is created)

memory is allocated.

Chaitali Shinde Page 2

Class

Collection of objects is called class. It is a logical entity.For Example: Consider the Class of

Cars. There may be many cars with different names and brand but all of them will share

some common properties like all of them will have 4 wheels, Speed Limit, Mileage range

etc. So here, Car is the class and wheels, speed limits, mileage are their properties.

 A Class is a user-defined data-type which has data members and member functions.

 Data members are the data variables and member functions are the functions used to

manipulate these variables and together these data members and member functions

define the properties and behaviour of the objects in a Class.

 In the above example of class Car, the data member will be speed limit, mileage etc and

member functions can apply brakes, increase speed etc.

Inheritance

When one object acquires all the properties and behaviours of parent object i.e. known

as inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

 Sub Class: The class that inherits properties from another class is called Sub class or

Derived Class.

 Super Class:The class whose properties are inherited by sub class is called Base Class

or Super class.

 Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to

create a new class and there is already a class that includes some of the code that we

want, we can derive our new class from the existing class. By doing this, we are reusing

the fields and methods of the existing class.

Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.

Polymorphism

When one task is performed by different ways i.e. known as polymorphism. For example:

to convince the customer differently, to draw something e.g. shape or rectangle etc.

A person at the same time can have different characteristic. Like a man at the same time is

a father, a husband, an employee. So the same person posses different behaviour in

different situations. This is called polymorphism.

Chaitali Shinde Page 3

An operation may exhibit different behaviours in different instances. The behaviour

depends upon the types of data used in the operation.

C++ supports operator overloading and function overloading.

 Operator Overloading: The process of making an operator to exhibit different

behaviours in different instances is known as operator overloading.

 Function Overloading: Function overloading is using a single function name to perform

different types of tasks.

Polymorphism is extensively used in implementing inheritance.

Example: Suppose we have to write a function to add some integers, some times there are 2

integers, some times there are 3 integers. We can write the Addition Method with the same

name having different parameters, the concerned method will be called according to

parameters.

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example:

phone call, we don't know the internal processing.

Consider a real-life example of a man driving a car. The man only knows that pressing the

accelerators will increase the speed of the car or applying brakes will stop the car but he

does not know about how on pressing accelerator the speed is actually increasing, he does

not know about the inner mechanism of the car or the implementation of accelerator, brakes

etc in the car. This is what abstraction is.

 Abstraction using Classes: We can implement Abstraction in C++ using classes. The

class helps us to group data members and member functions using available access

specifiers. A Class can decide which data member will be visible to the outside world

and which is not.

 Abstraction in Header files: One more type of abstraction in C++ can be header files.

For example, consider the pow() method present in math.h header file. Whenever we

need to calculate the power of a number, we simply call the function pow() present in

the math.h header file and pass the numbers as arguments without knowing the

underlying algorithm according to which the function is actually calculating the power

of numbers.

Encapsulation

Binding (or wrapping) code and data together into a single unit is known as

encapsulation. For example: capsule, it is wrapped with different medicines.

Chaitali Shinde Page 4

Consider a real-life example of encapsulation, in a company, there are different sections

like the accounts section, finance section, sales section etc. The finance section handles all

the financial transactions and keeps records of all the data related to finance. Similarly, the

sales section handles all the sales-related activities and keeps records of all the sales. Now

there may arise a situation when for some reason an official from the finance section needs

all the data about sales in a particular month. In this case, he is not allowed to directly

access the data of the sales section. He will first have to contact some other officer in the

sales section and then request him to give the particular data. This is what encapsulation is.

Here the data of the sales section and the employees that can manipulate them are wrapped

under a single name “sales section”.

Advantage of OOPs over Procedure-oriented programming language

1. OOPs makes development and maintenance easier where as in Procedure-oriented

programming language it is not easy to manage if code grows as project size grows.

2. OOPs provide data hiding whereas in Procedure-oriented programming language a

global data can be accessed from anywhere.

3. OOPs provide ability to simulate real-world event much more effectively. We can

provide the solution of real word problem if we are using the Object-Oriented

Programming language.

Introduction to CPP

C++ is a general-purpose programming language that was developed as an enhancement of

the C language to include object-oriented paradigm. It is an imperative and

a compiled language.

C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming

language that supports procedural, object-oriented, and generic programming.

C++ is regarded as a middle-level language, as it comprises a combination of both high-

level and low-level language features.

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray Hill, New

Jersey, as an enhancement to the C language and originally named C with Classes but later it

was renamed C++ in 1983.

C++ is a superset of C, and that virtually any legal C program is a legal C++ program.

Features of CPP

features & key-points to note about the programming language are as follows:

 Simple: It is a simple language in the sense that programs can be broken down into

logical units and parts, has a rich libray support and a variety of data-types.

 Machine Independent but Platform Dependent: A C++ executable is not platform-

independent (compiled programs on Linux won’t run on Windows), however they are

machine independent.

 Mid-level language: It is a mid-level language as we can do both systems-

programming (drivers, kernels, networking etc.) and build large-scale user applications

(Media Players, Photoshop, Game Engines etc.)

Chaitali Shinde Page 5

 Rich library support: Has a rich library support (Both standard ~ built-in data

structures, algorithms etc.) as well 3rd party libraries (e.g. Boost libraries) for fast and

rapid development.

 Speed of execution: C++ programs excel in execution speed. Since, it is a compiled

language, and also hugely procedural. Newer languages have extra in-built default

features such as grabage-collection, dynamic typing etc. which slow the execution of

the program overall. Since there is no additional processing overhead like this in C++, it

is blazing fast.

 Pointer and direct Memory-Access: C++ provides pointer support which aids users to

directly manipulate storage address. This helps in doing low-level programming (where

one might need to have explicit control on the storage of variables).

 Object-Oriented: One of the strongest points of the language which sets it apart from

C. Object-Oriented support helps C++ to make maintainable and extensible programs.

i.e. Large-scale applications can be built. Procedural code becomes difficult to maintain

as code-size grows.

 Compiled Language: C++ is a compiled language, contributing to its speed.

Applications of C++:
C++ finds varied usage in applications such as:

 Application Software Development - C++ programming has been used in

developing almost all the major Operating Systems like Windows, Mac OSX and

Linux. Apart from the operating systems, the core part of many browsers like

Mozilla Firefox and Chrome have been written using C++. C++ also has been used

in developing the most popular database system called MySQL.

 Programming Languages Development - C++ has been used extensively in

developing new programming languages like C#, Java, JavaScript, Perl, UNIX’s C

Shell, PHP and Python, and Verilog etc.

 Computation Programming - C++ is the best friends of scientists because of fast

speed and computational efficiencies.

 Games Development - C++ is extremely fast which allows programmers to do

procedural programming for CPU intensive functions and provides greater control

over hardware, because of which it has been widely used in development of gaming

engines.

 Embedded System - C++ is being heavily used in developing Medical and

Engineering Applications like softwares for MRI machines, high-end CAD/CAM

systems etc.

C++ Basic Input/Output

The C++ standard libraries provide an extensive set of input/output capabilities which we

will see in subsequent chapters. This chapter will discuss very basic and most common I/O

operations required for C++ programming.

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a device like a

keyboard, a disk drive, or a network connection etc. to main memory, this is called input

operation and if bytes flow from main memory to a device like a display screen, a printer, a

disk drive, or a network connection, etc., this is called output operation.

Chaitali Shinde Page 6

I/O Library Header Files

There are following header files important to C++ programs −

Sr.No Header File & Function and Description

1
<iostream>

This file defines the cin, cout, cerr and clog objects, which correspond to the standard

input stream, the standard output stream, the un-buffered standard error stream and the

buffered standard error stream, respectively.

2
<iomanip>

This file declares services useful for performing formatted I/O with so-called

parameterized stream manipulators, such as setw and setprecision.

3
<fstream>

This file declares services for user-controlled file processing. We will discuss about it in

detail in File and Stream related chapter.

The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout object is said to be

"connected to" the standard output device, which usually is the display screen. The cout is

used in conjunction with the stream insertion operator, which is written as << which are two

less than signs as shown in the following example.

#include <iostream>

using namespace std;

int main() {

 char str[] = "Hello C++";

 cout << "Value of str is : " << str << endl;

}

Chaitali Shinde Page 7

When the above code is compiled and executed, it produces the following result −

Output-> Value of str is : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the

appropriate stream insertion operator to display the value. The << operator is overloaded to

output data items of built-in types integer, float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above

and endl is used to add a new-line at the end of the line.

The Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin object is said to be

attached to the standard input device, which usually is the keyboard. The cin is used in

conjunction with the stream extraction operator, which is written as >> which are two

greater than signs as shown in the following example.

#include <iostream>

using namespace std;

int main() {

 char name[50];

 cout << "Please enter your name: ";

 cin >> name;

 cout << "Your name is: " << name << endl;

}

When the above code is compiled and executed, it will prompt you to enter a name. You

enter a value and then hit enter to see the following result −

Please enter your name: cplusplus

Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the

appropriate stream extraction operator to extract the value and store it in the given variables.

The stream extraction operator >> may be used more than once in a single statement. To

request more than one datum you can use the following −

cin >> name >> age;

This will be equivalent to the following two statements −

cin >> name;

cin >> age;

C++ Program Structure

Chaitali Shinde Page 8

Let us look at a simple code that would print the words Hello World.

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main() {

 cout << "Hello World"; // prints Hello World

 return 0;

}

Let us look at the various parts of the above program −

 The C++ language defines several headers, which contain information that is either

necessary or useful to your program. For this program, the header <iostream> is

needed.

 The line using namespace std; tells the compiler to use the std namespace.

Namespaces are a relatively recent addition to C++.

 The next line '// main() is where program execution begins.' is a single-line

comment available in C++. Single-line comments begin with // and stop at the end of

the line.

 The line int main() is the main function where program execution begins.

 The next line cout << "Hello World"; causes the message "Hello World" to be

displayed on the screen.

 The next line return 0; terminates main()function and causes it to return the value 0

to the calling process.

Chaitali Shinde Page 9

 Unit-2 Beginning with CPP

C++ Data Types

While writing program in any language, you need to use various variables to store various

information. Variables are nothing but reserved memory locations to store values. This

means that when you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character,

integer, floating point, double floating point, boolean etc. Based on the data type of a

variable, the operating system allocates memory and decides what can be stored in the

reserved memory.

Primitive Built-in Types

C++ offers the programmer a rich assortment of built-in as well as user defined data types.

Following table lists down seven basic C++ data types –

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers −

 signed

 unsigned

 short

 long

Chaitali Shinde Page 10

The following table shows the variable type, how much memory it takes to store the value in

memory, and what is maximum and minimum value which can be stored in such type of

variables.

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to 2,147,483,647

signed long int 8bytes same as long int

unsigned long int 8bytes 0 to 4,294,967,295

long long int 8bytes -(2^63) to (2^63)-1

unsigned long long int 8bytes 0 to 18,446,744,073,709,551,615

Chaitali Shinde Page 11

float 4bytes

double 8bytes

long double 12bytes

wchar_t 2 or 4 bytes 1 wide character

The size of variables might be different from those shown in the above table, depending on

the compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your

computer.

#include <iostream>

using namespace std;

int main() {

 cout << "Size of char : " << sizeof(char) << endl;

 cout << "Size of int : " << sizeof(int) << endl;

 cout << "Size of short int : " << sizeof(short int) << endl;

 cout << "Size of long int : " << sizeof(long int) << endl;

 cout << "Size of float : " << sizeof(float) << endl;

 cout << "Size of double : " << sizeof(double) << endl;

 cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;

 return 0;

}

This example uses endl, which inserts a new-line character after every line and << operator

is being used to pass multiple values out to the screen. We are also using sizeof() operator to

get size of various data types.

When the above code is compiled and executed, it produces the following result which can

vary from machine to machine −

Size of char : 1

Size of int : 4

Size of short int : 2

Size of long int : 4

Size of float : 4

Size of double : 8

Size of wchar_t : 4

typedef Declarations

You can create a new name for an existing type using typedef. Following is the simple

syntax to define a new type using typedef −

Chaitali Shinde Page 12

typedef type newname;

For example, the following tells the compiler that feet is another name for int −

typedef int feet;

Now, the following declaration is perfectly legal and creates an integer variable called

distance −

feet distance;

Enumerated Types

An enumerated type declares an optional type name and a set of zero or more identifiers that

can be used as values of the type. Each enumerator is a constant whose type is the

enumeration.

Creating an enumeration requires the use of the keyword enum. The general form of an

enumeration type is −

enum enum-name { list of names } var-list;

Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called colors and the

variable c of type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } c;

c = blue;

By default, the value of the first name is 0, the second name has the value 1, and the third

has the value 2, and so on. But you can give a name, a specific value by adding an initializer.

For example, in the following enumeration, green will have the value 5.

enum color { red, green = 5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that

precedes it.

C++ Keywords

The following list shows the reserved words in C++. These reserved words may not be used

as constant or variable or any other identifier names.

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

Chaitali Shinde Page 13

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

C++ Variable Types

A variable provides us with named storage that our programs can manipulate. Each variable

in C++ has a specific type, which determines the size and layout of the variable's memory;

the range of values that can be stored within that memory; and the set of operations that can

be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It

must begin with either a letter or an underscore. Upper and lowercase letters are distinct

because C++ is case-sensitive −

Variable Definition in C++

Chaitali Shinde Page 14

A variable definition tells the compiler where and how much storage to create for the

variable. A variable definition specifies a data type, and contains a list of one or more

variables of that type as follows −

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or

any user-defined object, etc., and variable_list may consist of one or more identifier names

separated by commas. Some valid declarations are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the

compiler to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows −

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly

initialized with NULL (all bytes have the value 0); the initial value of all other variables is

undefined.

Variable Declaration in C++

A variable declaration provides assurance to the compiler that there is one variable existing

with the given type and name so that compiler proceed for further compilation without

needing complete detail about the variable. A variable declaration has its meaning at the

time of compilation only, compiler needs actual variable definition at the time of linking of

the program.

A variable declaration is useful when you are using multiple files and you define your

variable in one of the files which will be available at the time of linking of the program. You

will use extern keyword to declare a variable at any place. Though you can declare a

variable multiple times in your C++ program, but it can be defined only once in a file, a

function or a block of code.

Example

Try the following example where a variable has been declared at the top, but it has been

defined inside the main function −

#include <iostream>

using namespace std;

Chaitali Shinde Page 15

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

int main () {

 // Variable definition:

 int a, b;

 int c;

 float f;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c << endl ;

 f = 70.0/3.0;

 cout << f << endl ;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

30

23.3333

Same concept applies on function declaration where you provide a function name at the time

of its declaration and its actual definition can be given anywhere else. For example −

// function declaration

int func();

int main() {

 // function call

 int i = func();

}

// function definition

int func() {

 return 0;

}

Variable Scope in C++

A scope is a region of the program and broadly speaking there are three places, where

variables can be declared −

 Inside a function or a block which is called local variables,

 In the definition of function parameters which is called formal parameters.

Chaitali Shinde Page 16

 Outside of all functions which is called global variables.

We will learn what is a function and it's parameter in subsequent chapters. Here let us

explain what are local and global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used

only by statements that are inside that function or block of code. Local variables are not

known to functions outside their own. Following is the example using local variables −

#include <iostream>

using namespace std;

int main () {

 // Local variable declaration:

 int a, b;

 int c;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c;

 return 0;

}

Global Variables

Global variables are defined outside of all the functions, usually on top of the program. The

global variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for

use throughout your entire program after its declaration. Following is the example using

global and local variables −

#include <iostream>

using namespace std;

// Global variable declaration:

int g;

int main () {

 // Local variable declaration:

 int a, b;

 // actual initialization

 a = 10;

 b = 20;

Chaitali Shinde Page 17

 g = a + b;

 cout << g;

 return 0;

}

A program can have same name for local and global variables but value of local variable

inside a function will take preference. For example −

#include <iostream>

using namespace std;

// Global variable declaration:

int g = 20;

int main () {

 // Local variable declaration:

 int g = 10;

 cout << g;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

10

Operators in C++

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C++ is rich in built-in operators and provide the following types of operators

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other

operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by C++ language −

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm

Chaitali Shinde Page 18

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an

integer division

B % A will give 0

++ Increment operator, increases integer value

by one

A++ will give 11

-- Decrement operator, decreases integer value

by one

A-- will give 9

Relational Operators

There are following relational operators supported by C++ language

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

== Checks if the values of two operands are

equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

Chaitali Shinde Page 19

> Checks if the value of left operand is

greater than the value of right operand, if

yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less

than the value of right operand, if yes then

condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of right

operand, if yes then condition becomes

true.

(A >= B) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is true.

Logical Operators

There are following logical operators supported by C++ language.

Assume variable A holds 1 and variable B holds 0, then −

Show Examples

Operator Description Example

&& Called Logical AND operator. If both

the operands are non-zero, then

condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of

the two operands is non-zero, then

condition becomes true.

(A || B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

Chaitali Shinde Page 20

! Called Logical NOT Operator. Use to

reverses the logical state of its operand.

If a condition is true, then Logical NOT

operator will make false.

!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |,

and ^ are as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then −

Show Examples

Operator Description Example

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm

Chaitali Shinde Page 21

& Binary AND Operator copies a bit to

the result if it exists in both

operands.

(A & B) will give 12 which is 0000 1100

| Binary OR Operator copies a bit if it

exists in either operand.

(A | B) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit

if it is set in one operand but not

both.

(A ^ B) will give 49 which is 0011 0001

~ Binary Ones Complement Operator

is unary and has the effect of

'flipping' bits.

(~A) will give -61 which is 1100 0011 in 2's

complement form due to a signed binary

number.

<< Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators

There are following assignment operators supported by C++ language −

Show Examples

Operator Description Example

= Simple assignment operator, Assigns

values from right side operands to left side

operand.

C = A + B will assign value of A + B into

C

https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

Chaitali Shinde Page 22

+= Add AND assignment operator, It adds

right operand to the left operand and

assign the result to left operand.

C += A is equivalent to C = C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It

divides left operand with the right operand

and assign the result to left operand.

C /= A is equivalent to C = C / A

%= Modulus AND assignment operator, It

takes modulus using two operands and

assign the result to left operand.

C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment

operator.
C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment

operator.
C |= 2 is same as C = C | 2

Misc Operators

Chaitali Shinde Page 23

The following table lists some other operators that C++ supports.

Sr.No Operator & Description

1
sizeof

sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is

integer, and will return 4.

2
Condition ? X : Y

Conditional operator (?). If Condition is true then it returns value of X otherwise returns

value of Y.

3
,

Comma operator causes a sequence of operations to be performed. The value of the

entire comma expression is the value of the last expression of the comma-separated list.

4
. (dot) and -> (arrow)

Member operators are used to reference individual members of classes, structures, and

unions.

5
Cast

Casting operators convert one data type to another. For example, int(2.2000) would

return 2.

6
&

Pointer operator & returns the address of a variable. For example &a; will give actual

address of the variable.

7
*

Pointer operator * is pointer to a variable. For example *var; will pointer to a variable

var.

Operators Precedence in C++

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example,

the multiplication operator has higher precedence than the addition operator −

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

Chaitali Shinde Page 24

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators will be

evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

https://www.tutorialspoint.com/cplusplus/cpp_operators_precedence.htm

Chaitali Shinde Page 25

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^=

|=

Right to left

Comma , Left to right

Memory Management Operators

In C language, we use the malloc() or calloc() functions to allocate the memory

dynamically at run time, and free() function is used to deallocate the dynamically

allocated memory. C++ also supports these functions, but C++ also defines unary

operators such as new and delete to perform the same tasks, i.e., allocating and freeing

the memory.

New operator

A new operator is used to create the object while a delete operator is used to delete the

object. When the object is created by using the new operator, then the object will exist until

we explicitly use the delete operator to delete the object. Therefore, we can say that the

lifetime of the object is not related to the block structure of the program.

Syntax

1. pointer_variable = new data-type

The above syntax is used to create the object using the new operator. In the above

syntax, 'pointer_variable' is the name of the pointer variable, 'new' is the operator,

and 'data-type' defines the type of the data.

Example 1:

1. int *p;

2. p = new int;

In the above example, 'p' is a pointer of type int.

Delete operator

When memory is no longer required, then it needs to be deallocated so that the memory can

be used for another purpose. This can be achieved by using the delete operator, as shown

below:

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

Chaitali Shinde Page 26

1. delete pointer_variable;

In the above statement, 'delete' is the operator used to delete the existing object,

and 'pointer_variable' is the name of the pointer variable.

In the previous case, we have created two pointers 'p' and 'q' by using the new operator, and

can be deleted by using the following statements:

1. delete p;

C++ Functions

A function is a group of statements that together perform a task. Every C++ program has at

least one function, which is main(), and all the most trivial programs can define additional

functions.

You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is such that each function

performs a specific task.

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call.

For example, function strcat() to concatenate two strings, function memcpy() to copy one

memory location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list) {

 body of the function

}

A C++ function definition consists of a function header and a function body. Here are all the

parts of a function −

 Return Type − A function may return a value. The return_type is the data type of

the value the function returns. Some functions perform the desired operations

without returning a value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you

pass a value to the parameter. This value is referred to as actual parameter or

argument. The parameter list refers to the type, order, and number of the parameters

of a function. Parameters are optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define

what the function does.

Chaitali Shinde Page 27

Example

Following is the source code for a function called max(). This function takes two parameters

num1 and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the

function. The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so

following is also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call

that function in another file. In such case, you should declare the function at the top of the

file calling the function.

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a

function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A

called function performs defined task and when it’s return statement is executed or when its

function-ending closing brace is reached, it returns program control back to the main

program.

To call a function, you simply need to pass the required parameters along with function

name, and if function returns a value, then you can store returned value. For example −

#include <iostream>

Chaitali Shinde Page 28

using namespace std;

// function declaration

int max(int num1, int num2);

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int ret;

 // calling a function to get max value.

 ret = max(a, b);

 cout << "Max value is : " << ret << endl;

 return 0;

}

// function returning the max between two numbers

int max(int num1, int num2) {

 // local variable declaration

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

I kept max() function along with main() function and compiled the source code. While

running final executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

Sr.No Call Type & Description

1 Call by Value

This method copies the actual value of an argument into the formal parameter of the

function. In this case, changes made to the parameter inside the function have no effect

on the argument.

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm

Chaitali Shinde Page 29

The formal parameters behave like other local variables inside the function and are created

upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function −

By default, C++ uses call by value to pass arguments. In general, this means that code

within a function cannot alter the arguments used to call the function and above mentioned

example while calling max() function used the same method.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last parameters.

This value will be used if the corresponding argument is left blank when calling to the

function.

This is done by using the assignment operator and assigning values for the arguments in the

function definition. If a value for that parameter is not passed when the function is called,

the default given value is used, but if a value is specified, this default value is ignored and

the passed value is used instead. Consider the following example −

#include <iostream>

using namespace std;

int sum(int a, int b = 20) {

 int result;

 result = a + b;

 return (result);

}

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 int result;

 // calling a function to add the values.

 result = sum(a, b);

 cout << "Total value is :" << result << endl;

2 Call by Pointer

This method copies the address of an argument into the formal parameter. Inside the

function, the address is used to access the actual argument used in the call. This means

that changes made to the parameter affect the argument.

3 Call by Reference

This method copies the reference of an argument into the formal parameter. Inside the

function, the reference is used to access the actual argument used in the call. This means

that changes made to the parameter affect the argument.

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm

Chaitali Shinde Page 30

 // calling a function again as follows.

 result = sum(a);

 cout << "Total value is :" << result << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Total value is :300

Total value is :120

Unit 3
C++ Classes and Objects

The main purpose of C++ programming is to add object orientation to the C programming

language and classes are the central feature of C++ that supports object-oriented

programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and

methods for manipulating that data into one neat package. The data and functions within a

class are called members of the class.

C++ Class Definitions

When you define a class, you define a blueprint for a data type. This doesn't actually define

any data, but it does define what the class name means, that is, what an object of the class

will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class

body, enclosed by a pair of curly braces. A class definition must be followed either by a

semicolon or a list of declarations. For example, we defined the Box data type using the

keyword class as follows −

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class that

follows it. A public member can be accessed from outside the class anywhere within the

scope of the class object. You can also specify the members of a class

as private or protected which we will discuss in a sub-section.

Define C++ Objects

Chaitali Shinde Page 31

A class provides the blueprints for objects, so basically an object is created from a class. We

declare objects of a class with exactly the same sort of declaration that we declare variables

of basic types. Following statements declare two objects of class Box −

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

Accessing the Data Members

The public data members of objects of a class can be accessed using the direct member

access operator (.). Let us try the following example to make the things clear −

#include <iostream>

using namespace std;

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main() {

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 cout << "Volume of Box2 : " << volume <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Chaitali Shinde Page 32

Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly using

direct member access operator (.). We will learn how private and protected members can be

accessed.

Classes and Objects in Detail

So far, you have got very basic idea about C++ Classes and Objects. There are further

interesting concepts related to C++ Classes and Objects which we will discuss in various

sub-sections listed below −

Sr.No Concept & Description

1 Class Member Functions

A member function of a class is a function that has its definition or its prototype

within the class definition like any other variable.

2 Class Access Modifiers

A class member can be defined as public, private or protected. By default members

would be assumed as private.

3 Constructor & Destructor

A class constructor is a special function in a class that is called when a new object of

the class is created. A destructor is also a special function which is called when

created object is deleted.

4 Copy Constructor

The copy constructor is a constructor which creates an object by initializing it with

an object of the same class, which has been created previously.

5 Friend Functions

A friend function is permitted full access to private and protected members of a

class.

6 Inline Functions

With an inline function, the compiler tries to expand the code in the body of the

function in place of a call to the function.

https://www.tutorialspoint.com/cplusplus/cpp_class_member_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_class_access_modifiers.htm
https://www.tutorialspoint.com/cplusplus/cpp_constructor_destructor.htm
https://www.tutorialspoint.com/cplusplus/cpp_copy_constructor.htm
https://www.tutorialspoint.com/cplusplus/cpp_friend_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_inline_functions.htm

Chaitali Shinde Page 33

7 this Pointer

Every object has a special pointer this which points to the object itself.

8 Pointer to C++ Classes

A pointer to a class is done exactly the same way a pointer to a structure is. In fact a

class is really just a structure with functions in it.

9 Static Members of a Class

Both data members and function members of a class can be declared as static.

Access Specifiers

By now, you are quite familiar with the public keyword that appears in all of our class

examples:

Example

class MyClass { // The class

 public: // Access specifier

 // class members goes here

};

The public keyword is an access specifier. Access specifiers define how the members

(attributes and methods) of a class can be accessed. In the example above, the members

are public - which means that they can be accessed and modified from outside the code.

However, what if we want members to be private and hidden from the outside world?

In C++, there are three access specifiers:

 public - members are accessible from outside the class

 private - members cannot be accessed (or viewed) from outside the class

 protected - members cannot be accessed from outside the class, however, they can be

accessed in inherited classes. You will learn more about Inheritance later.

In the following example, we demonstrate the differences

between public and private members:

Example

class MyClass {

 public: // Public access specifier

https://www.tutorialspoint.com/cplusplus/cpp_this_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_class.htm
https://www.tutorialspoint.com/cplusplus/cpp_static_members.htm
https://www.w3schools.com/cpp/cpp_inheritance.asp

Chaitali Shinde Page 34

 int x; // Public attribute

 private: // Private access specifier

 int y; // Private attribute

};

int main() {

 MyClass myObj;

 myObj.x = 25; // Allowed (public)

 myObj.y = 50; // Not allowed (private)

 return 0;

}

If you try to access a private member, an error occurs:

error: y is private

Class Methods

Methods are functions that belongs to the class.

There are two ways to define functions that belongs to a class:

 Inside class definition

 Outside class definition

In the following example, we define a function inside the class, and we name it "myMethod".

Note: You access methods just like you access attributes; by creating an object of the class and

by using the dot syntax (.):

Inside Example

class MyClass { // The class

 public: // Access specifier

 void myMethod() { // Method/function defined inside the class

 cout << "Hello World!";

 }

};

int main() {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0;

}

Chaitali Shinde Page 35

To define a function outside the class definition, you have to declare it inside the class and then

define it outside of the class. This is done by specifiying the name of the class, followed the scope

resolution :: operator, followed by the name of the function:

Outside Example

class MyClass { // The class

 public: // Access specifier

 void myMethod(); // Method/function declaration

};

// Method/function definition outside the class

void MyClass::myMethod() {

 cout << "Hello World!";

}

int main() {

 MyClass myObj; // Create an object of MyClass

 myObj.myMethod(); // Call the method

 return 0;

}

 Example

#include <iostream>

using namespace std;

class Car {

 public:

 int speed(int maxSpeed);

};

int Car::speed(int maxSpeed) {

 return maxSpeed;

}

int main() {

 Car myObj; // Create an object of Car

 cout << myObj.speed(200); // Call the method with an argument

 return 0;

}

Chaitali Shinde Page 36

Static Data Member & Member Function in C++

Static Data Member

A data member of a class can be qualified as static. The properties of a static member

variable are similar to that of Cs static variable. A static data member has certain

special characteristics. They are:-

 It is initialized to zero when the first object of its class is created. No other

initialization is permitted.

 Only one copy of that member is created for the entire class and is shared by all

the objects of that class, no matter how many objects are created.

 It is visible only within the class, but its lifetime is the entire program.

A static variable is normally used to maintain value common to the entire class. For

e.g, to hold the count of objects created. Note that the type and scope of each static

member variable must be declared outside the class definition. This is necessary

because the static data members are stored separately rather than as a part of an

object.

Chaitali Shinde Page 37

Declaration

static data_type member_name;

Defining the static data member

It should be defined outside of the class following this syntax:

data_type class_name :: member_name =value;

If you are calling a static data member within a member function, member function should be

declared as static (i.e. a static member function can access the static data members)

Let’s see a simple example

#include <iostream>

using namespace std;

class Demo

{

 public:

 static int ABC;

};

//defining

int Demo :: ABC =10;

int main()

{

 cout<<"\nValue of ABC: "<<Demo::ABC;

 return 0;

}

Output

Value of ABC: 10

Static Member Function

like a static member variable, we can also have static member functions. A member function

that is declared static has the following properties:-

Chaitali Shinde Page 38

 A static function can have access to only other static members (function or variable)

declared in the same class.

 A static member function can be called using the class name (instead of its object) as

follows-

Class_name::Function_name();

Consider the example, here static data member is accessing through the static member

function:

#include <iostream>

using namespace std;class Demo

{

 private:

 static int X; public:

 static void fun()

 {

 cout <<"Value of X: " << X << endl;

 }

};//defining

int Demo :: X =10;

int main()

{

 Demo X; X.fun();

 return 0;

}

Output

Chaitali Shinde Page 39

Value of X: 10

Friend Class in C++

Friend Class A friend class can access private and protected members of other class in

which it is declared as friend. It is sometimes useful to allow a particular class to access

private members of other class. For example a LinkedList class may be allowed to access

private members of Node.

class Node {

private:

 int key;

 Node* next;

 /* Other members of Node Class */

 // Now class LinkedList can

 // access private members of Node

 friend class LinkedList;

};

Friend Functions in C++

A friend function of a class is defined outside that class' scope but it has the right to access

all private and protected members of the class. Even though the prototypes for friend

functions appear in the class definition, friends are not member functions.

A friend can be a function, function template, or member function, or a class or class

template, in which case the entire class and all of its members are friends.

To declare a function as a friend of a class, precede the function prototype in the class

definition with keyword friend as follows −

class Box {

 double width;

 public:

 double length;

 friend void printWidth(Box box);

 void setWidth(double wid);

};

To declare all member functions of class ClassTwo as friends of class ClassOne, place a

following declaration in the definition of class ClassOne −

friend class ClassTwo;

Chaitali Shinde Page 40

Consider the following program −

#include <iostream>

using namespace std;

class Box {

 double width;

 public:

 friend void printWidth(Box box);

 void setWidth(double wid);

};

// Member function definition

void Box::setWidth(double wid) {

 width = wid;

}

// Note: printWidth() is not a member function of any class.

void printWidth(Box box) {

 /* Because printWidth() is a friend of Box, it can

 directly access any member of this class */

 cout << "Width of box : " << box.width <<endl;

}

// Main function for the program

int main() {

 Box box;

 // set box width without member function

 box.setWidth(10.0);

 // Use friend function to print the wdith.

 printWidth(box);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Width of box : 10

 Unit 4

 Constructors and Destructors

Chaitali Shinde Page 41

Constructors and Destructors in C++

Constructors are special class functions which performs initialization of every

object. The Compiler calls the Constructor whenever an object is created.

Constructors initialize values to object members after storage is allocated to the

object.

Whereas, Destructor on the other hand is used to destroy the class object.

Let's start with Constructors first, following is the syntax of defining a

constructor function in a class:

class A

{

 public:

 int x;

 // constructor

 A()

 {

 // object initialization

 }

};

While defining a contructor you must remeber that the name of

constructor will be same as the name of the class, and contructors will never

have a return type.

Constructors can be defined either inside the class definition or outside class

definition using class name and scope resolution :: operator.

class A

{

 public:

 int i;

 A(); // constructor declared

};

// constructor definition

A::A()

{

 i = 1;

}

Types of Constructors in C++

Constructors are of three types:

Chaitali Shinde Page 42

1. Default Constructor

2. Parametrized Constructor

3. Copy COnstructor

Default Constructors

Default constructor is the constructor which doesn't take any argument. It has no

parameter.

Syntax:

class_name(parameter1, parameter2, ...)

{

 // constructor Definition

}

For example:

class Cube

{

 public:

 int side;

 Cube()

 {

 side = 10;

 }

};

int main()

{

 Cube c;

 cout << c.side;

}

10

In this case, as soon as the object is created the constructor is called which

initializes its data members.

A default constructor is so important for initialization of object members, that

even if we do not define a constructor explicitly, the compiler will provide a

default constructor implicitly.

class Cube

{

 public:

 int side;

Chaitali Shinde Page 43

};

int main()

{

 Cube c;

 cout << c.side;

}

0 or any random value

In this case, default constructor provided by the compiler will be called which

will initialize the object data members to default value, that will be 0 or any

random integer value in this case.

Parameterized Constructors

These are the constructors with parameter. Using this Constructor you can

provide different values to data members of different objects, by passing the

appropriate values as argument.

For example:

class Cube

{

 public:

 int side;

 Cube(int x)

 {

 side=x;

 }

};

int main()

{

 Cube c1(10);

 Cube c2(20);

 Cube c3(30);

 cout << c1.side;

 cout << c2.side;

 cout << c3.side;

}

Chaitali Shinde Page 44

Output-

10

20

30

By using parameterized construcor in above case, we have initialized 3 objects

with user defined values. We can have any number of parameters in a

constructor.

Copy Constructors

These are special type of Constructors which takes an object as argument, and is

used to copy values of data members of one object into other object. We will

study copy constructors in detail later.

Constructor Overloading in C++

Just like other member functions, constructors can also be overloaded. Infact

when you have both default and parameterized constructors defined in your

class you are having Overloaded Constructors, one with no parameter and other

with parameter.

You can have any number of Constructors in a class that differ in parameter list.

class Student

{

 public:

 int rollno;

 string name;

 // first constructor

 Student(int x)

 {

 rollno = x;

 name = "None";

 }

 // second constructor

 Student(int x, string str)

 {

 rollno = x;

 name = str;

 }

};

int main()

https://www.studytonight.com/cpp/copy-constructor-in-cpp.php

Chaitali Shinde Page 45

{

 // student A initialized with roll no 10 and name None

 Student A(10);

 // student B initialized with roll no 11 and name John

 Student B(11, "John");

}

In above case we have defined two constructors with different parameters,

hence overloading the constructors.

One more important thing, if you define any constructor explicitly, then the

compiler will not provide default constructor and you will have to define it

yourself.

In the above case if we write Student S; in main(), it will lead to a compile time

error, because we haven't defined default constructor, and compiler will not

provide its default constructor because we have defined other parameterized

constructors.

Destructors in C++

Destructor is a special class function which destroys the object as soon as the

scope of object ends. The destructor is called automatically by the compiler

when the object goes out of scope.

The syntax for destructor is same as that for the constructor, the class name is

used for the name of destructor, with a tilde ~ sign as prefix to it.

class A

{

 public:

 // defining destructor for class

 ~A()

 {

 // statement

 }

};

Destructors will never have any arguments.

Example to see how Constructor and Destructor are called

Below we have a simple class A with a constructor and destructor. We will

create object of the class and see when a constructor is called and when a

destructor gets called.

class A

Chaitali Shinde Page 46

{

 // constructor

 A()

 {

 cout << "Constructor called";

 }

 // destructor

 ~A()

 {

 cout << "Destructor called";

 }

};

int main()

{

 A obj1; // Constructor Called

 int x = 1

 if(x)

 {

 A obj2; // Constructor Called

 } // Destructor Called for obj2

} // Destructor called for obj1

Constructor called

Constructor called

Destructor called

Destructor called

When an object is created the constructor of that class is called. The object

reference is destroyed when its scope ends, which is generally after the closing

curly bracket } for the code block in which it is created.

The object obj2 is destroyed when the if block ends because it was created inside

the if block. And the object obj1 is destroyed when the main() function ends.

Single Definition for both Default and Parameterized Constructor

In this example we will use default argument to have a single definition for

both defualt and parameterized constructor.

class Dual

{

 public:

Chaitali Shinde Page 47

 int a;

 Dual(int x=0)

 {

 a = x;

 }

};

int main()

{

 Dual obj1;

 Dual obj2(10);

}

Here, in this program, a single Constructor definition will take care for both

these object initializations. We don't need separate default and parameterized

constructors.

 Unit 5

Inheritance in C++

The capability of a class to derive properties and characteristics from another

class is called Inheritance. Inheritance is one of the most important feature of

Object Oriented Programming.

Sub Class: The class that inherits properties from another class is called Sub

class or Derived Class.

Super Class:The class whose properties are inherited by sub class is called

Base Class or Super class.

Chaitali Shinde Page 48

Why and when to use inheritance?

Consider a group of vehicles. You need to create classes for Bus, Car and

Truck. The methods fuelAmount(), capacity(), applyBrakes() will be same for

all of the three classes. If we create these classes avoiding inheritance then we

have to write all of these functions in each of the three classes as shown in

below figure:

You can clearly see that above process results in duplication of same code 3

times. This increases the chances of error and data redundancy. To avoid this

type of situation, inheritance is used. If we create a class Vehicle and write these

three functions in it and inherit the rest of the classes from the vehicle class,

then we can simply avoid the duplication of data and increase re-usability. Look

at the below diagram in which the three classes are inherited from vehicle class:

Using inheritance, we have to write the functions only one time instead of three

times as we have inherited rest of the three classes from base class(Vehicle).

Implementing inheritance in C++: For creating a sub-class which is inherited

from the base class we have to follow the below syntax.

Syntax:

class subclass_name : access_mode base_class_name

{

 //body of subclass

https://media.geeksforgeeks.org/wp-content/uploads/inheritance.png
https://media.geeksforgeeks.org/wp-content/uploads/inheritance2.png

Chaitali Shinde Page 49

};

Here, subclass_name is the name of the sub class, access_mode is the mode in

which you want to inherit this sub class for example: public, private etc.

and base_class_name is the name of the base class from which you want to

inherit the sub class.

Note: A derived class doesn’t inherit access to private data members. However,

it does inherit a full parent object, which contains any private members which

that class declares.

// C++ program to demonstrate implementation

// of Inheritance

#include <bits/stdc++.h>

using namespace std;

//Base class

class Parent

{

 public:

 int id_p;

};

// Sub class inheriting from Base Class(Parent)

class Child : public Parent

{

 public:

 int id_c;

};

//main function

int main()

 {

 Child obj1;

 // An object of class child has all data members

 // and member functions of class parent

 obj1.id_c = 7;

 obj1.id_p = 91;

 cout << "Child id is " << obj1.id_c << endl;

 cout << "Parent id is " << obj1.id_p << endl;

 return 0;

 }

Output:

Child id is 7

Parent id is 91

In the above program the ‘Child’ class is publicly inherited from the ‘Parent’

class so the public data members of the class ‘Parent’ will also be inherited by

the class ‘Child’.

Chaitali Shinde Page 50

Modes of Inheritance

1. Public mode: If we derive a sub class from a public base class. Then the

public member of the base class will become public in the derived class and

protected members of the base class will become protected in derived class.

2. Protected mode: If we derive a sub class from a Protected base class. Then

both public member and protected members of the base class will become

protected in derived class.

3. Private mode: If we derive a sub class from a Private base class. Then both

public member and protected members of the base class will become Private

in derived class.

Note : The private members in the base class cannot be directly accessed in the

derived class, while protected members can be directly accessed. For example,

Classes B, C and D all contain the variables x, y and z in below example. It is

just question of access.

// C++ Implementation to show that a derived class

// doesn’t inherit access to private data members.

// However, it does inherit a full parent object

class A

{

public:

 int x;

protected:

 int y;

private:

 int z;

};

class B : public A

{

 // x is public

 // y is protected

 // z is not accessible from B

};

class C : protected A

{

 // x is protected

 // y is protected

 // z is not accessible from C

};

class D : private A // 'private' is default for classes

{

 // x is private

 // y is private

Chaitali Shinde Page 51

 // z is not accessible from D

};

The below table summarizes the above three modes and shows the access

specifier of the members of base class in the sub class when derived in public,

protected and private modes:

Types of Inheritance in C++

1. Single Inheritance: In single inheritance, a class is allowed to inherit from

only one class. i.e. one sub class is inherited by one base class only.

Syntax:

class subclass_name : access_mode base_class

{

 //body of subclass

};

Example

Chaitali Shinde Page 52

// C++ program to explain

// Single inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle{ };

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a vehicle

2. Multiple Inheritance: Multiple Inheritance is a feature of C++ where a

class can inherit from more than one classes. i.e one sub class is inherited

from more than one base classes.

Syntax:

class subclass_name : access_mode base_class1, access_mode base_class2,

{

 //body of subclass

};

Here, the number of base classes will be separated by a comma (‘, ‘) and access

mode for every base class must be specified.

Chaitali Shinde Page 53

// C++ program to explain

// multiple inheritance

#include <iostream>

using namespace std;

// first base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// second base class

class FourWheeler {

 public:

 FourWheeler()

 {

 cout << "This is a 4 wheeler Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle, public FourWheeler {};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

3. Multilevel Inheritance: In this type of inheritance, a derived class is created from

another derived class.

Example

Chaitali Shinde Page 54

// C++ program to implement

// Multilevel Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

class fourWheeler: public Vehicle

{ public:

 fourWheeler()

 {

 cout<<"Objects with 4 wheels are vehicles"<<endl;

 }

};

// sub class derived from two base classes

class Car: public fourWheeler{

 public:

 car()

 {

 cout<<"Car has 4 Wheels"<<endl;

 }

};

// main function

int main()

{

 //creating object of sub class will

 //invoke the constructor of base classes

 Car obj;

 return 0;

}

output:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

4. Hierarchical Inheritance: In this type of inheritance, more than one sub

class is inherited from a single base class. i.e. more than one derived class is

created from a single base class

Chaitali Shinde Page 55

.

// C++ program to implement

// Hierarchical Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Car obj1;

 Bus obj2;

 return 0;

Chaitali Shinde Page 56

}

Output:

This is a Vehicle

This is a Vehicle

5. Hybrid (Virtual) Inheritance: Hybrid Inheritance is implemented by combining more

than one type of inheritance. For example: Combining Hierarchical inheritance and

Multiple Inheritance.

Below image shows the combination of hierarchical and multiple inheritance:

// C++ program for Hybrid Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

//base class

class Fare

{

 public:

 Fare()

 {

 cout<<"Fare of Vehicle\n";

 }

};

Chaitali Shinde Page 57

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle, public Fare

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

Fare of Vehicle

A special case of hybrid inheritance : Multipath inheritance:

A derived class with two base classes and these two base classes have one

common base class is called multipath inheritance. An ambiguity can arrise in

this type of inheritance.

Consider the following program:

Chaitali Shinde Page 58

// C++ program demonstrating ambiguity in Multipath Inheritance

#include<iostream.h>

#include<conio.h>

class ClassA

 {

 public:

 int a;

 };

 class ClassB : public ClassA

 {

 public:

 int b;

 };

 class ClassC : public ClassA

 {

 public:

 int c;

 };

 class ClassD : public ClassB, public ClassC

 {

 public:

 int d;

 };

 void main()

 {

 ClassD obj;

 //obj.a = 10; //Statement 1, Error

 //obj.a = 100; //Statement 2, Error

 obj.ClassB::a = 10; //Statement 3

 obj.ClassC::a = 100; //Statement 4

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout<< "\n A from ClassB : "<< obj.ClassB::a;

 cout<< "\n A from ClassC : "<< obj.ClassC::a;

 cout<< "\n B : "<< obj.b;

 cout<< "\n C : "<< obj.c;

 cout<< "\n D : "<< obj.d;

Chaitali Shinde Page 59

 }

Output:

A from ClassB : 10

A from ClassC : 100

B : 20

C : 30

D : 40

In the above example, both Class B & Class C inherit Class A, they both have

single copy of Class A. However Class D inherit both Class B & Class C,

therefore Class D have two copies of Class A, one from Class B and another

from Class C.

If we need to access the data member a of Class A through the object of Class

D, we must specify the path from which a will be accessed, whether it is from

Class B or Class C, bco’z compiler can’t differentiate between two copies of

Class A in Class D.

There are 2 ways to avoid this ambiguity:

1. Use scope resolution operator

2. Use virtual base class

Avoiding ambiguity using scope resolution operator:

Using scope resolution operator we can manually specify the path from which

data member a will be accessed, as shown in statement 3 and 4, in the above

example.

obj.ClassB::a = 10; //Statement 3

obj.ClassC::a = 100; //Statement 4

Chaitali Shinde Page 60

Output:

A : 100

Note : Still, there are two copies of Class A in Class D.

#include<iostream.h>

 #include<conio.h>

 class Class A

 {

 public:

 int a;

 };

 class Class B : virtual public Class A

 {

 public:

 int b;

 };

 class Class C : virtual public Class A

 {

 public:

 int c;

 };

 class Class D : public Class B, public Class C

 {

 public:

 int d;

 };

 void main()

 {

 Class D obj;

 obj.a = 10; //Statement 3

 obj.a = 100; //Statement 4

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout<< "\n A : "<< obj.a;

 cout<< "\n B : "<< obj.b;

 cout<< "\n C : "<< obj.c;

 cout<< "\n D : "<< obj.d;

 }

Chaitali Shinde Page 61

B : 20

C : 30

D : 40

According to the above example, ClassD has only one copy of ClassA,

therefore, statement 4 will overwrite the value of a, given at statement 3.

 Unit 6

 Polymorphism

The word polymorphism means having many forms. Typically, polymorphism occurs when

there is a hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different function to

be executed depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes −

#include <iostream>

using namespace std;

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0){

 width = a;

 height = b;

 }

 int area() {

 cout << "Parent class area :" <<endl;

 return 0;

 }

};

class Rectangle: public Shape {

 public:

 Rectangle(int a = 0, int b = 0):Shape(a, b) { }

 int area () {

 cout << "Rectangle class area :" <<endl;

 return (width * height);

 }

};

class Triangle: public Shape {

 public:

 Triangle(int a = 0, int b = 0):Shape(a, b) { }

Chaitali Shinde Page 62

 int area () {

 cout << "Triangle class area :" <<endl;

 return (width * height / 2);

 }

};

// Main function for the program

int main() {

 Shape *shape;

 Rectangle rec(10,7);

 Triangle tri(10,5);

 // store the address of Rectangle

 shape = &rec;

 // call rectangle area.

 shape->area();

 // store the address of Triangle

 shape = &tri;

 // call triangle area.

 shape->area();

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Parent class area :

Parent class area :

The reason for the incorrect output is that the call of the function area() is being set once by

the compiler as the version defined in the base class. This is called static resolution of the

function call, or static linkage - the function call is fixed before the program is executed.

This is also sometimes called early binding because the area() function is set during the

compilation of the program.

But now, let's make a slight modification in our program and precede the declaration of

area() in the Shape class with the keyword virtual so that it looks like this −

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0) {

 width = a;

 height = b;

 }

 virtual int area() {

 cout << "Parent class area :" <<endl;

 return 0;

Chaitali Shinde Page 63

 }

};

After this slight modification, when the previous example code is compiled and executed, it

produces the following result −

Rectangle class area

Triangle class area

This time, the compiler looks at the contents of the pointer instead of it's type. Hence, since

addresses of objects of tri and rec classes are stored in *shape the respective area() function

is called.

As you can see, each of the child classes has a separate implementation for the function

area(). This is how polymorphism is generally used. You have different classes with a

function of the same name, and even the same parameters, but with different

implementations.

Virtual Function

A virtual function is a function in a base class that is declared using the keyword virtual.

Defining in a base class a virtual function, with another version in a derived class, signals to

the compiler that we don't want static linkage for this function.

What we do want is the selection of the function to be called at any given point in the

program to be based on the kind of object for which it is called. This sort of operation is

referred to as dynamic linkage, or late binding.

Pure Virtual Functions

It is possible that you want to include a virtual function in a base class so that it may be

redefined in a derived class to suit the objects of that class, but that there is no meaningful

definition you could give for the function in the base class.

We can change the virtual function area() in the base class to the following −

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0) {

 width = a;

 height = b;

 }

 // pure virtual function

 virtual int area() = 0;

};

The = 0 tells the compiler that the function has no body and above virtual function will be

called pure virtual function.

Chaitali Shinde Page 64

In C++ polymorphism is mainly divided into two types:
 Compile time Polymorphism

 Runtime Polymorphism

1. Compile time polymorphism: This type of polymorphism is achieved by

function overloading or operator overloading.

 Function Overloading: When there are multiple functions with same name but

different parameters then these functions are said to be overloaded. Functions can

be overloaded by change in number of arguments or/and change in type of

arguments.

Rules of Function Overloading

filter_none

edit

play_arrow

brightness_4

// C++ program for function overloading

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 public:

 // function with 1 int parameter

 void func(int x)

 {

 cout << "value of x is " << x << endl;

 }

 // function with same name but 1 double parameter

 void func(double x)

 {

 cout << "value of x is " << x << endl;

 }

https://www.geeksforgeeks.org/function-overloading-c/
https://www.geeksforgeeks.org/function-overloading-in-c/

Chaitali Shinde Page 65

 // function with same name and 2 int parameters

 void func(int x, int y)

 {

 cout << "value of x and y is " << x << ", " << y << endl;

 }

};

int main() {

 Geeks obj1;

 // Which function is called will depend on the parameters passed

 // The first 'func' is called

 obj1.func(7);

 // The second 'func' is called

 obj1.func(9.132);

 // The third 'func' is called

 obj1.func(85,64);

 return 0;

}

Output:

value of x is 7

value of x is 9.132

value of x and y is 85, 64

In the above example, a single function named func acts differently in three different

situations which is the property of polymorphism.

 Operator Overloading: C++ also provide option to overload operators. For example,

we can make the operator (‘+’) for string class to concatenate two strings. We know

that this is the addition operator whose task is to add two operands. So a single

operator ‘+’ when placed between integer operands , adds them and when placed

between string operands, concatenates them.

Example:

// CPP program to illustrate

// Operator Overloading

#include<iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r = 0, int i =0) {real = r; imag = i;}

https://www.geeksforgeeks.org/operator-overloading-c/

Chaitali Shinde Page 66

 // This is automatically called when '+' is used with

 // between two Complex objects

 Complex operator + (Complex const &obj) {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void print() { cout << real << " + i" << imag << endl; }

};

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3 = c1 + c2; // An example call to "operator+"

 c3.print();

}

Output:

12 + i9

In the above example the operator ‘+’ is overloaded. The operator ‘+’ is an addition

operator and can add two numbers(integers or floating point) but here the operator is

made to perform addition of two imaginary or complex numbers.

Runtime polymorphism: This type of polymorphism is achieved by

Function Overriding.

 Function overriding on the other hand occurs when a derived class has a definition

for one of the member functions of the base class. That base function is said to

be overridden.

filter_none

edit

play_arrow

brightness_4

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/
https://www.geeksforgeeks.org/override-keyword-c/

Chaitali Shinde Page 67

// C++ program for function overriding

#include <bits/stdc++.h>

using namespace std;

class base

{

public:

 virtual void print ()

 { cout<< "print base class" <<endl; }

 void show ()

 { cout<< "show base class" <<endl; }

};

class derived:public base

{

public:

 void print () //print () is already virtual function in derived class, we could also declared as

virtual void print () explicitly

 { cout<< "print derived class" <<endl; }

 void show ()

 { cout<< "show derived class" <<endl; }

};

//main function

int main()

{

 base *bptr;

 derived d;

 bptr = &d;

 //virtual function, binded at runtime (Runtime polymorphism)

 bptr->print();

 // Non-virtual function, binded at compile time

 bptr->show();

 return 0;

}

Output:

print derived class

show base class

Chaitali Shinde Page 68

Operator Overloading in C++

 Operator overloading is a type of polymorphism in which an operator is overloaded to give

user defined meaning to it.

 The main purpose of operator overloading is to perform operation on user defined data

type. For eg. The '+' operator can be overloaded to perform addition on various data types.

 Operator overloading is used by the programmer to make a program clearer.

 It is an important concept in C++.

Syntax:

Return_type Classname :: Operator OperatorSymbol (Argument_List)

{

 //Statements;

}

 The operator keyword is used for overloading the operators.

There are a few operators which cannot be overloaded are follows,

i. Scope resolution operator (::)

ii. sizeof

iii. member selector (.)

iv. member pointer selector (*)

v. ternary operator (? :)

There are some restrictions considered while implementing the operator overloading,

1. The number of operands cannot be changed. Unary operator remains unary, binary remains

binary etc.

2. Only existing operators can be overloaded.

3. The precedence and associativity of an operator cannot be changed.

4. Cannot redefine the meaning of a procedure.

Overloadable Operators

Following is the list of operators which can be overloaded:

+ - * / % ^

& | ~ ! , =

< > <= >= ++ -

Chaitali Shinde Page 69

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

→ →* new new[] delete delete[]

Unary Operator Overloading

Unary operator works with one operand and therefore the user defined data types, operand

becomes the caller and hence no arguments are required.

Example : Program demonstrating the Unary Increment & Decrement Operator Overloading

#include<iostream>

using namespace std;

//Increment and Decrement overloading

class IncreDecre

{

 private:

 int cnt ;

 public:

 IncreDecre() //Default constructor

 {

 cnt = 0 ;

 }

 IncreDecre(int C) // Constructor with Argument

 {

 cnt = C ;

 }

 IncreDecre operator ++ () // Operator Function Definition for prefix

 {

 return IncreDecre(++cnt);

 }

 IncreDecre operator ++ (int) // Operator Function Definition with dummy

Chaitali Shinde Page 70

argument for postfix

 {

 return IncreDecre(cnt++);

 }

 IncreDecre operator -- () // Operator Function Definition for prefix

 {

 return IncreDecre(--cnt);

 }

 IncreDecre operator -- (int) // Operator Function Definition with dummy argument

for postfix

 {

 return IncreDecre(cnt--);

 }

 void show()

 {

 cout << cnt << endl ;

 }

};

int main()

{

 IncreDecre a, b(5), c, d, e(2), f(5);

 cout<<"Unary Increment Operator : "<<endl;

 cout << "Before using the operator ++()\n";

 cout << "a = ";

 a.show();

 cout << "b = ";

 b.show();

 ++a;

 b++;

 cout << "After using the operator ++()\n";

 cout << "a = ";

 a.show();

 cout << "b = ";

Chaitali Shinde Page 71

 b.show();

 c = ++a;

 d = b++;

 cout << "Result prefix (on a) and postfix (on b)\n";

 cout << "c = ";

 c.show();

 cout << "d = ";

 d.show();

 cout<<"\n Unary Decrement Operator : "<<endl;

 cout << "Before using the operator --()\n";

 cout << "e = ";

 e.show();

 cout << "f = ";

 f.show();

 --e;

 f--;

 cout << "After using the operator --()\n";

 cout << "e = ";

 e.show();

 cout << "f = ";

 f.show();

 c = --e;

 d = f--;

 cout << "Result prefix (on e) and postfix (on f)\n";

 cout << "c = ";

 c.show();

 cout << "d = ";

 d.show();

Chaitali Shinde Page 72

 return 0;

}

Output:

Unary Increment Operator :

Before using the operator ++()

a = 0

b = 5

After using the operator ++()

a = 1

b = 6

Result prefix (on a) and postfix (on b)

c = 2

d = 6

Unary Decrement Operator :

Before using the operator --()

e = 2

f = 5

After using the operator --()

e = 1

f = 4

Result prefix (on e) and postfix (on f)

c = 0

d = 4

In the above program, int is a dummy argument to redefine the functions for the

unary increment (++) and decrement (– –) overloaded operators. Remember one thing int is

not an Integer, it is just a dummy argument. It is a signal to compiler to create the postfix

notation of the operator. Bjarne Stroustrup has introduced the concept of dummy

argument, so it becomes function overloading for the operator overloaded functions.

Chaitali Shinde Page 73

 Unit 7

Managing console I/O operations

C++ Stream Classes Structure

In C++ there are number of stream classes for defining various streams related with files

and for doing input-output operations. All these classes are defined in the file iostream.h.

Figure given below shows the hierarchy of these classes.

1. ios class is topmost class in the stream classes hierarchy. It is the base class for istream,

ostream, and streambuf class.

2. istream and ostream serves the base classes for iostream class. The class istream is

used for input and ostream for the output.

3. Class ios is indirectly inherited to iostream class using istream and ostream. To avoid

the duplicity of data and member functions of ios class, it is declared as virtual base

class when inheriting in istream and ostream as

class istream: virtual public ios

{

};

class ostream: virtual public ios

{

};

The _withassign classes are provided with extra functionality for the assignment

operations that’s why _withassign classes.

Facilities provided by these stream classes.

http://www.geeksforgeeks.org/c-plus-plus/

Chaitali Shinde Page 74

1. The ios class: The ios class is responsible for providing all input and output facilities to

all other stream classes.

2. The istream class: This class is responsible for handling input stream. It provides

number of function for handling chars, strings and objects such as get, getline, read,

ignore, putback etc..

Example:

#include <iostream>

using namespace std;

int main()

{

 char x;

 // used to scan a single char

 cin.get(x);

 cout << x;

}

Input:

g

Output:

g

The ostream class: This class is responsible for handling output stream. It provides

number of function for handling chars, strings and objects such as write, put etc..

Example:

#include <iostream>

using namespace std;

int main()

{

 char x;

 // used to scan a single char

 cin.get(x);

 // used to put a single char onto the screen.

 cout.put(x);

}

Chaitali Shinde Page 75

1. Input:

g

Output:

g

The iostream: This class is responsible for handling both input and output stream as

both istream class and ostream class is inherited into it. It provides function of

both istream class and ostream class for handling chars, strings and objects such as get,

getline, read, ignore, putback, put, write etc..

Example:

#include <iostream>

using namespace std;

int main()

{

 // this function display

 // ncount character from array

 cout.write("geeksforgeeks", 5);

}

Output:

geeks

istream_withassign class: This class is variant of istream that allows object assigment.

The predefined object cin is an object of this class and thus may be reassigned at run time

to a different istream object.

Example:To show that cin is object of istream class.

#include <iostream>

using namespace std;

class demo {

public:

 int dx, dy;

 // operator overloading using friend function

 friend void operator>>(demo& d, istream& mycin)

 {

 // cin assigned to another object mycin

 mycin >> d.dx >> d.dy;

 }

Chaitali Shinde Page 76

};

int main()

{

 demo d;

 cout << "Enter two numbers dx and dy\n";

 // calls operator >> function and

 // pass d and cin as reference

 d >> cin; // can also be written as operator >> (d, cin) ;

 cout << "dx = " << d.dx << "\tdy = " << d.dy;

}

Input:

4 5

Output:

Enter two numbers dx and dy

4 5

dx = 4 dy = 5

ostream_withassign class: This class is variant of ostream that allows object assigment.

The predefined objects cout, cerr, clog are objects of this class and thus may be reassigned

at run time to a different ostream object.

Example:To show that cout is object of ostream class.

#include <iostream>

using namespace std;

class demo {

public:

 int dx, dy;

 demo()

 {

 dx = 4;

 dy = 5;

 }

 // operator overloading using friend function

 friend void operator<<(demo& d, ostream& mycout)

 {

 // cout assigned to another object mycout

 mycout << "Value of dx and dy are \n";

 mycout << d.dx << " " << d.dy;

Chaitali Shinde Page 77

 }

};

int main()

{

 demo d; // default constructor is called

 // calls operator << function and

 // pass d and cout as reference

 d << cout; // can also be written as operator << (d, cout) ;

}

Output:

Value of dx and dy are

4 5

Unit 8

Working with Files

C++ Files and Streams

So far, we have been using the iostream standard library, which

provides cin and cout methods for reading from standard input and writing to standard

output respectively.

This tutorial will teach you how to read and write from a file. This requires another standard

C++ library called fstream, which defines three new data types −

Sr.No Data Type & Description

1
ofstream

This data type represents the output file stream and is used to create files and to write

information to files.

2
ifstream

This data type represents the input file stream and is used to read information from files.

Chaitali Shinde Page 78

3
fstream

This data type represents the file stream generally, and has the capabilities of both

ofstream and ifstream which means it can create files, write information to files, and read

information from files.

To perform file processing in C++, header files <iostream> and <fstream> must be included

in your C++ source file.

Opening a File

A file must be opened before you can read from it or write to it.

Either ofstream or fstream object may be used to open a file for writing. And ifstream

object is used to open a file for reading purpose only.

Following is the standard syntax for open() function, which is a member of fstream,

ifstream, and ofstream objects.

void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened and the

second argument of the open() member function defines the mode in which the file should

be opened.

Sr.No Mode Flag & Description

1
ios::app

Append mode. All output to that file to be appended to the end.

2
ios::ate

Open a file for output and move the read/write control to the end of the file.

3
ios::in

Open a file for reading.

4
ios::out

Open a file for writing.

5
ios::trunc

If the file already exists, its contents will be truncated before opening the file.

Chaitali Shinde Page 79

You can combine two or more of these values by ORing them together. For example if you

want to open a file in write mode and want to truncate it in case that already exists,

following will be the syntax −

ofstream outfile;

outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows −

fstream afile;

afile.open("file.dat", ios::out | ios::in);

Closing a File

When a C++ program terminates it automatically flushes all the streams, release all the

allocated memory and close all the opened files. But it is always a good practice that a

programmer should close all the opened files before program termination.

Following is the standard syntax for close() function, which is a member of fstream,

ifstream, and ofstream objects.

void close();

Writing to a File

While doing C++ programming, you write information to a file from your program using the

stream insertion operator (<<) just as you use that operator to output information to the

screen. The only difference is that you use an ofstream or fstream object instead of

the cout object.

Reading from a File

You read information from a file into your program using the stream extraction operator

(>>) just as you use that operator to input information from the keyboard. The only

difference is that you use an ifstream or fstream object instead of the cin object.

Read and Write Example

Following is the C++ program which opens a file in reading and writing mode. After writing

information entered by the user to a file named afile.dat, the program reads information from

the file and outputs it onto the screen −

#include <fstream>

#include <iostream>

using namespace std;

int main () {

 char data[100];

 // open a file in write mode.

 ofstream outfile;

Chaitali Shinde Page 80

 outfile.open("afile.dat");

 cout << "Writing to the file" << endl;

 cout << "Enter your name: ";

 cin.getline(data, 100);

 // write inputted data into the file.

 outfile << data << endl;

 cout << "Enter your age: ";

 cin >> data;

 cin.ignore();

 // again write inputted data into the file.

 outfile << data << endl;

 // close the opened file.

 outfile.close();

 // open a file in read mode.

 ifstream infile;

 infile.open("afile.dat");

 cout << "Reading from the file" << endl;

 infile >> data;

 // write the data at the screen.

 cout << data << endl;

 // again read the data from the file and display it.

 infile >> data;

 cout << data << endl;

 // close the opened file.

 infile.close();

 return 0;

}

When the above code is compiled and executed, it produces the following sample input and

output −

$./a.out

Writing to the file

Enter your name: Zara

Enter your age: 9

Reading from the file

Zara

9

Chaitali Shinde Page 81

Above examples make use of additional functions from cin object, like getline() function to

read the line from outside and ignore() function to ignore the extra characters left by

previous read statement.

File Position Pointers

Both istream and ostream provide member functions for repositioning the file-position

pointer. These member functions are seekg ("seek get") for istream and seekp ("seek put")

for ostream.

The argument to seekg and seekp normally is a long integer. A second argument can be

specified to indicate the seek direction. The seek direction can be ios::beg (the default) for

positioning relative to the beginning of a stream, ios::cur for positioning relative to the

current position in a stream or ios::end for positioning relative to the end of a stream.

The file-position pointer is an integer value that specifies the location in the file as a number

of bytes from the file's starting location. Some examples of positioning the "get" file-

position pointer are −

// position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);

// position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);

// position at end of fileObject

fileObject.seekg(0, ios::end);

C++ Exception Handling
An exception is a problem that arises during the execution of a program. A C++ exception is

a response to an exceptional circumstance that arises while a program is running, such as an

attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C++

exception handling is built upon three keywords: try, catch, and throw.

 throw − A program throws an exception when a problem shows up. This is done

using a throw keyword.

 catch − A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The catch keyword indicates the

catching of an exception.

 try − A try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using a

combination of the try and catch keywords. A try/catch block is placed around the code that

Chaitali Shinde Page 82

might generate an exception. Code within a try/catch block is referred to as protected code,

and the syntax for using try/catch as follows −

try {

 // protected code

} catch(ExceptionName e1) {

 // catch block

} catch(ExceptionName e2) {

 // catch block

} catch(ExceptionName eN) {

 // catch block

}

You can list down multiple catch statements to catch different type of exceptions in case

your try block raises more than one exception in different situations.

Throwing Exceptions

Exceptions can be thrown anywhere within a code block using throw statement. The

operand of the throw statement determines a type for the exception and can be any

expression and the type of the result of the expression determines the type of exception

thrown.

Following is an example of throwing an exception when dividing by zero condition occurs −

double division(int a, int b) {

 if(b == 0) {

 throw "Division by zero condition!";

 }

 return (a/b);

}

Catching Exceptions

The catch block following the try block catches any exception. You can specify what type

of exception you want to catch and this is determined by the exception declaration that

appears in parentheses following the keyword catch.

try {

 // protected code

} catch(ExceptionName e) {

 // code to handle ExceptionName exception

}

Above code will catch an exception of ExceptionName type. If you want to specify that a

catch block should handle any type of exception that is thrown in a try block, you must put

an ellipsis, ..., between the parentheses enclosing the exception declaration as follows −

try {

 // protected code

} catch(...) {

 // code to handle any exception

}

Chaitali Shinde Page 83

The following is an example, which throws a division by zero exception and we catch it in

catch block.

#include <iostream>

using namespace std;

double division(int a, int b) {

 if(b == 0) {

 throw "Division by zero condition!";

 }

 return (a/b);

}

int main () {

 int x = 50;

 int y = 0;

 double z = 0;

 try {

 z = division(x, y);

 cout << z << endl;

 } catch (const char* msg) {

 cerr << msg << endl;

 }

 return 0;

}

Because we are raising an exception of type const char*, so while catching this exception,

we have to use const char* in catch block. If we compile and run above code, this would

produce the following result −

Division by zero condition!

C++ Standard Exceptions

C++ provides a list of standard exceptions defined in <exception> which we can use in our

programs. These are arranged in a parent-child class hierarchy shown below −

Chaitali Shinde Page 84

Here is the small description of each exception mentioned in the above hierarchy −

Sr.No Exception & Description

1
std::exception

An exception and parent class of all the standard C++ exceptions.

2
std::bad_alloc

This can be thrown by new.

3
std::bad_cast

This can be thrown by dynamic_cast.

4
std::bad_exception

This is useful device to handle unexpected exceptions in a C++ program.

Chaitali Shinde Page 85

5
std::bad_typeid

This can be thrown by typeid.

6
std::logic_error

An exception that theoretically can be detected by reading the code.

7
std::domain_error

This is an exception thrown when a mathematically invalid domain is used.

8
std::invalid_argument

This is thrown due to invalid arguments.

9
std::length_error

This is thrown when a too big std::string is created.

10
std::out_of_range

This can be thrown by the 'at' method, for example a std::vector and

std::bitset<>::operator[]().

11
std::runtime_error

An exception that theoretically cannot be detected by reading the code.

12
std::overflow_error

This is thrown if a mathematical overflow occurs.

13
std::range_error

This is occurred when you try to store a value which is out of range.

14
std::underflow_error

This is thrown if a mathematical underflow occurs.

Define New Exceptions

Chaitali Shinde Page 86

You can define your own exceptions by inheriting and overriding exception class

functionality. Following is the example, which shows how you can use std::exception class

to implement your own exception in standard way −

#include <iostream>

#include <exception>

using namespace std;

struct MyException : public exception {

 const char * what () const throw () {

 return "C++ Exception";

 }

};

int main() {

 try {

 throw MyException();

 } catch(MyException& e) {

 std::cout << "MyException caught" << std::endl;

 std::cout << e.what() << std::endl;

 } catch(std::exception& e) {

 //Other errors

 }

}

This would produce the following result −

MyException caught

C++ Exception

Here, what() is a public method provided by exception class and it has been overridden by

all the child exception classes. This returns the cause of an exception.

Chaitali Shinde Page 87

 Unit 9- Templates

Templates are the foundation of generic programming, which involves writing code in a way

that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function. The library

containers like iterators and algorithms are examples of generic programming and have been

developed using template concept.

There is a single definition of each container, such as vector, but we can define many

different kinds of vectors for example, vector <int> or vector <string>.

You can use templates to define functions as well as classes, let us see how they work −

Function Template

The general form of a template function definition is shown here −

template <class type> ret-type func-name(parameter list) {

 // body of function

}

Here, type is a placeholder name for a data type used by the function. This name can be used

within the function definition.

The following is the example of a function template that returns the maximum of two values

−

#include <iostream>

#include <string>

using namespace std;

template <typename T>

inline T const& Max (T const& a, T const& b) {

 return a < b ? b:a;

}

int main () {

 int i = 39;

 int j = 20;

 cout << "Max(i, j): " << Max(i, j) << endl;

 double f1 = 13.5;

 double f2 = 20.7;

 cout << "Max(f1, f2): " << Max(f1, f2) << endl;

 string s1 = "Hello";

 string s2 = "World";

 cout << "Max(s1, s2): " << Max(s1, s2) << endl;

 return 0;

}

Chaitali Shinde Page 88

If we compile and run above code, this would produce the following result −

Max(i, j): 39

Max(f1, f2): 20.7

Max(s1, s2): World

Class Template

Just as we can define function templates, we can also define class templates. The general

form of a generic class declaration is shown here −

template <class type> class class-name {

 .

 .

 .

}

Here, type is the placeholder type name, which will be specified when a class is instantiated.

You can define more than one generic data type by using a comma-separated list.

Following is the example to define class Stack<> and implement generic methods to push

and pop the elements from the stack −

#include <iostream>

#include <vector>

#include <cstdlib>

#include <string>

#include <stdexcept>

using namespace std;

template <class T>

class Stack {

 private:

 vector<T> elems; // elements

 public:

 void push(T const&); // push element

 void pop(); // pop element

 T top() const; // return top element

 bool empty() const { // return true if empty.

 return elems.empty();

 }

};

template <class T>

void Stack<T>::push (T const& elem) {

 // append copy of passed element

 elems.push_back(elem);

}

template <class T>

Chaitali Shinde Page 89

void Stack<T>::pop () {

 if (elems.empty()) {

 throw out_of_range("Stack<>::pop(): empty stack");

 }

 // remove last element

 elems.pop_back();

}

template <class T>

T Stack<T>::top () const {

 if (elems.empty()) {

 throw out_of_range("Stack<>::top(): empty stack");

 }

 // return copy of last element

 return elems.back();

}

int main() {

 try {

 Stack<int> intStack; // stack of ints

 Stack<string> stringStack; // stack of strings

 // manipulate int stack

 intStack.push(7);

 cout << intStack.top() <<endl;

 // manipulate string stack

 stringStack.push("hello");

 cout << stringStack.top() << std::endl;

 stringStack.pop();

 stringStack.pop();

 } catch (exception const& ex) {

 cerr << "Exception: " << ex.what() <<endl;

 return -1;

 }

}

If we compile and run above code, this would produce the following result −

7

hello

Exception: Stack<>::pop(): empty stack

	OOPs (Object Oriented Programming)
	Object
	Class
	Inheritance
	Polymorphism
	Abstraction
	Encapsulation

	Advantage of OOPs over Procedure-oriented programming language
	C++ Basic Input/Output
	I/O Library Header Files
	The Standard Output Stream (cout)
	The Standard Input Stream (cin)
	C++ Program Structure
	Primitive Built-in Types
	typedef Declarations
	Enumerated Types
	C++ Keywords

	C++ Variable Types
	Variable Definition in C++
	Variable Declaration in C++
	Example

	Variable Scope in C++
	Local Variables
	Global Variables

	Operators in C++
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Misc Operators
	Operators Precedence in C++
	Memory Management Operators

	In C language, we use the malloc() or calloc() functions to allocate the memory dynamically at run time, and free() function is used to deallocate the dynamically allocated memory. C++ also supports these functions, but C++ also defines unary operator...
	New operator
	Delete operator

	C++ Functions
	Defining a Function
	Example
	Function Declarations
	Calling a Function
	Function Arguments
	Default Values for Parameters

	Unit 3
	C++ Classes and Objects
	C++ Class Definitions
	Define C++ Objects
	Accessing the Data Members
	Classes and Objects in Detail
	Access Specifiers
	Example
	Example (1)

	Class Methods
	Inside Example
	Outside Example
	Example

	Static Data Member & Member Function in C++
	Static Data Member
	Declaration
	Defining the static data member It should be defined outside of the class following this syntax:

	Static Member Function
	Consider the example, here static data member is accessing through the static member function:
	Output

	Friend Class in C++
	Friend Functions in C++
	Constructors and Destructors in C++
	Types of Constructors in C++
	Default Constructors
	Parameterized Constructors
	Copy Constructors

	Constructor Overloading in C++
	Destructors in C++
	Example to see how Constructor and Destructor are called
	Single Definition for both Default and Parameterized Constructor

	Virtual Function
	Pure Virtual Functions

	Operator Overloading in C++
	Overloadable Operators
	Unary Operator Overloading
	Example : Program demonstrating the Unary Increment & Decrement Operator Overloading

	C++ Stream Classes Structure
	Unit 8
	Working with Files
	C++ Files and Streams
	Opening a File
	Closing a File
	Writing to a File
	Reading from a File
	Read and Write Example
	File Position Pointers

	C++ Exception Handling
	Throwing Exceptions
	Catching Exceptions
	C++ Standard Exceptions
	Define New Exceptions
	Function Template
	Class Template

